Structure theorems for certain topological rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure theorems for AP rings

In “New Proofs of the structure theorems for Witt Rings”, the first author shows how the standard ring-theoretic results on the Witt ring can be deduced in a quick and elementary way from the fact that the Witt ring of a field is integral and from the specific nature of the explicit annihilating polynomials he provides. We will show in the present article that the same structure results hold fo...

متن کامل

On Structure of Certain Periodic Rings and Near-rings

The aim of this work is to study a decomposition theorem for rings satisfying either of the properties xy = xpf(xyx)xq or xy = xpf(yxy)xq , where p = p(x,y), q = q(x,y) are nonnegative integers and f(t)∈ tZ[t] vary with the pair of elements x,y, and further investigate the commutativity of such rings. Other related results are obtained for near-rings.

متن کامل

On Sandwich theorems for certain classes of analytic functions

The purpose of this present paper is to derive some subordination and superordination results for certain analytic functions in the open unit disk. Relevant connections of the results, which are presented in the paper, with various known results are also considered.

متن کامل

Some commutativity theorems for $*$-prime rings with $(sigma,tau)$-derivation

‎Let $R$ be a $*$-prime ring with center‎ ‎$Z(R)$‎, ‎$d$ a non-zero $(sigma,tau)$-derivation of $R$ with associated‎ ‎automorphisms $sigma$ and $tau$ of $R$‎, ‎such that $sigma$‎, ‎$tau$‎ ‎and $d$ commute with $'*'$‎. ‎Suppose that $U$ is an ideal of $R$ such that $U^*=U$‎, ‎and $C_{sigma,tau}={cin‎ ‎R~|~csigma(x)=tau(x)c~mbox{for~all}~xin R}.$ In the present paper‎, ‎it is shown that if charac...

متن کامل

Structure of rings with certain conditions on zero divisors

Throughout this paper, R is an associative ring; andN ,C,C(R), and J denote, respectively, the set of nilpotent elements, the center, the commutator ideal, and the Jacobson radical. An element x of R is called potent if xn = x for some positive integer n= n(x) > 1. A ring R is called periodic if for every x in R, xm = xn for some distinct positive integersm=m(x), n = n(x). A ring R is called we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1973

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1973-0325713-x